MA 242 : Partial Differential Equations (August-December, 2018)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore

Problem set 1

1. Find and sketch some sample characteristic curves of the PDE

$$
(x+2) u_{x}+2 y u_{y}=2 u
$$

in the $x-y$ plane. Write the ODE for u along a characteristic curve with x as parameter and then, solve the PDE with the initial condition $u(-1, y)=\sqrt{|y|}$.
2. Consider the PDE

$$
x u_{x}+y u_{y}=2 u, x>0, y>0 .
$$

Plot the characteristic curves and then, solve the equation with the following initial conditions in the domain given above: (a) $u=1$ on the hyperbola $x y=1$; and (b) $u=1$ on the circle $x^{2}+y^{2}=1$.

Can you solve the equation, in general, if certain initial data is prescribed on the initial curve $y=e^{x}$? Justify with reasons.
3. Sketch the characteristic curve; the initial curve and solve the following problems
(a) $x u_{x}+y u_{y}=k u, \quad x \in \mathbb{R}, y \geq \alpha>0 ; \quad u(x, \alpha)=F(x)$, where k, α are fixed and F is a given smooth function.
(b) $(x+2) u_{x}+2 y u_{y}=\alpha u ; \quad u(-1, y)=\sqrt{y}$.
(c) $y u_{x}-x u_{y}=0 ; \quad u(x, 0)=x^{2}$.
(d) $x^{2} u_{x}-y^{2} u_{y}=0 ; \quad u(1, y)=F(y)$.
4. Find the characteristic curves of the following equations
(a) $\left(x^{2}-y^{2}+1\right) u_{x}+2 x y u_{y}=0$.
(b) $2 x y u_{x}-\left(x^{2}+y^{2}\right) u_{y}=0$.
5. Solve the quasi-linear problem and verify transversality conditions.
(a) $u u_{x}+u_{y}=0, \quad u(x, 0)=x$.
(b) $u u_{x}+u_{y}=1, \quad u(x, x)=x / 2, x \in(0,1]$.
6. Find and sketch the characteristic curves of $u u_{x}+u_{y}=0$ with the following initial conditions
(a) $u(x, 0)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{cases}$
(b) $u(x, 0)= \begin{cases}1 & \text { if } x<0 \\ 0 & \text { if } x \geq 0\end{cases}$
(c) $u(x, 0)=\left\{\begin{array}{ll}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 1\end{array}\right.$ and $u(x, 0)$ is smooth and increasing.
7. Write down the characteristic ODE system for the equation $u_{y}=u_{x}^{3}$ and then, solve with the initial condition $2 x^{3 / 2}$ on the x - axis.
8. Find the integral surface of the equation $x\left(\frac{\partial u}{\partial x}\right)^{2}+y \frac{\partial u}{\partial y}=u$ passing through the line $y=$ $1, x+z=0$.
9. Consider the equation $p^{2}+q^{2}=1$ with initial condition $u(x, y)=0$ on the line $x+y=1$. Find two solutions using the method of characteristics.
10. Solve the following IVP:
(a)

$$
u_{t}-\sqrt{u_{x_{1}}^{2}+u_{x_{2}}^{2}}=0, u\left(x_{1}, x_{2}, t_{0}\right)=\psi\left(x_{1}^{2}+x_{2}^{2}\right)
$$

where $\psi^{\prime}>0$; here $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $t>t_{0}$.
(b)

$$
u_{t}+x \cos t u_{x}=0, u(x, 0)=\frac{1}{1+x^{2}} x \in \mathbb{R}, t>0
$$

(c)

$$
u_{t}+x^{2} u_{x}=0, u(x, 0)=\phi(x), x \in \mathbb{R}, t>0
$$

(d)

$$
u_{t}+\frac{1}{1+|x|} u_{x}=0, u(x, 0)=\phi(x), x \in \mathbb{R}, t>0
$$

(e)

$$
\begin{gathered}
u_{t}+(x+t) u_{x}+t(x+1) u=0, u(x, 0)=\phi(x), x \in \mathbb{R}, t>0 . \\
u_{t}+u^{2} u_{x}=0, u(x, 0)=x, x \in \mathbb{R}, t>0 .
\end{gathered}
$$

